The Perfect LT5

Marc Haibeck
Haibeck Automotive
www.zr1specialist.com

The '06 Z06 Killer

Marc Haibeck
Haibeck Automotive
www.zr1specialist.com

A Short List of Highly Refined LT5's

- The 500 hp 350
- The 530 hp 368
- The 550 hp 368
- The 565 hp 385
- The 600 hp 415
- The 650 hp 415

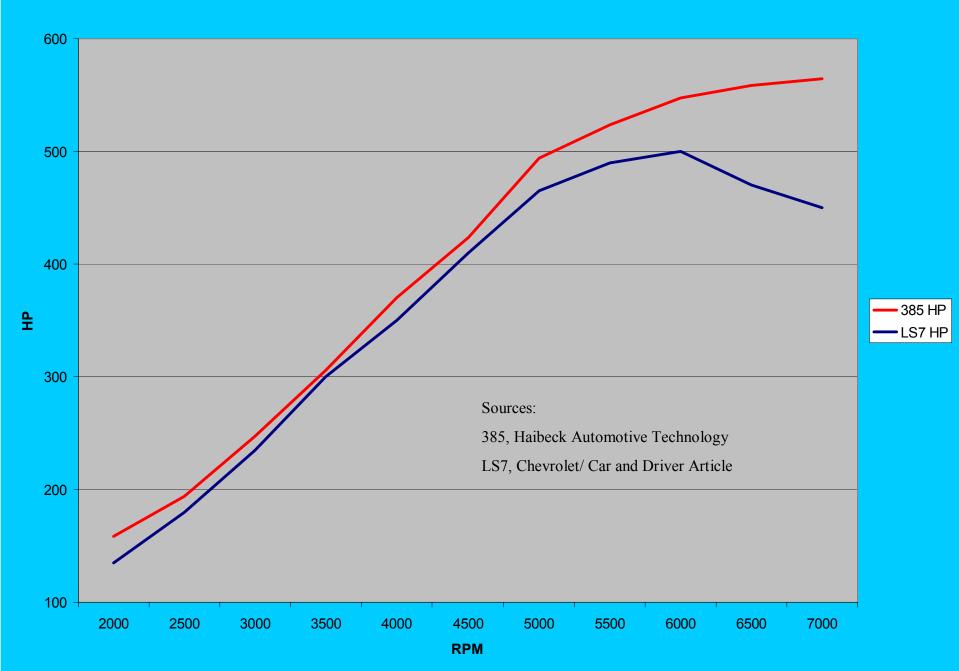
The 500 hp 350

Pro

- Very resistant to wear and tear
- Nicasil liners
- Cast aluminum pistons
- Best oil control
- Best bang for the buck
- Con
 - Not a '06 Z06 killer
- Easily kills '00 through '04 Z06's

The 530 hp 368

- Pro
 - 530 hp
 - Light weight pistons and rods
- Con
 - Downgraded wear and tear
 - Not a '06 Z06 killer
- Leaves '00 through '04 Z06's far behind


The 550 hp 368

- Pro
 - 550 hp
- Con
 - Downgraded wear and tear
 - Rough idle at 900 rpm
- Aggravates '06 Z06's

The 565 hp 385

- Pro
 - '06 Z06 killer
- Con
 - Better wear and tear than a 415
 - Smooth idle like stock a LT5
- Teaches '06 Z06's a lesson

385 Verses LS7 Horsepower

The 600 hp 415

- Pro
 - Plenty of power
- Con
 - Less oil control than a 385
 - Undesirable rod ratio places a lot of lateral load on the outer piston skirt at BDC
- What's a '06 Z06?

The 650 hp 415

Pro

More power comes from long duration camshafts

Con

- Less oil control than a 385
- Undesirable rod ratio places a lot of lateral load on the outer piston skirt
- Rough idle at 900 to 1000 rpm

Important Technical Issues for Increased Displacement LT5's

- Liners
- Rod ratio
- Oil control
- Pistons
- Tuning

Liners

The stock liners are aluminum with a Nicasil coating

Nicasil is used for coating the cylinders of high quality engines. It is superior to iron and hard-chromed cylinder walls. It is a coating made up of nickel and silicon carbide. The Nicasil coating is very hard and durable thus providing a very long wearing surface for the piston and rings. The silicon carbide particles that are dispersed throughout the nickel form adhesion spots on which oil can collect. This is one reason why engines with Nicasil coated cylinders last longer. They have improved cylinder lubrication. The Nicasil coating impregnates the cylinder walls with silicon. The result is a lower coefficient of friction, thus reducing engine heat and wear.

Liners

Increased Displacement LT5's

The bore is increased from 3.9 to 4.0 inches with thinner liners. With a stock stroke this yields a 368 ci displacement.

Generally chrome-moly iron sleeves are utilized. A popular source is the Los Angeles Sleeve Company.

It's difficult to properly fit to piston to the liner. We use a proprietary honing procedure to obtain the required cylinder straightness and piston fit.

We fit the pistons with .002 inch cylinder to wall clearance. Piston slap is minimized.

No galvanic corrosion has been encountered

Four Inch Liner

About .240" thick —

Lower clamp point ____

.085" thick -

Rod Ratio

- Effects performance and durability. The rod length is mostly dictated by the height of the block. A long rod and a high ratio are better.
- Generally rod ratios between 1.6 and 1.8 are considered good. Note that the range is .2

```
- Small block Chevy 5.70/3.480 = 1.64
```

- Stock LT5 5.74/3.661 = 1.57

- LT5 385 5.85/3.830 = 1.52

LT5 415 5.85/4.125 = 1.42

 A lower rod ratio increases the side thrust on the piston. It increases the rate of acceleration of the piston at BDC.

Engine C.I.	Bore Size	Stroke Length	Pushrod Length	
AMC V8 Engine				
304	3.750	3.440	7.79 4	
360	4.080	3.440	7.794	
390	4.165	3.570	7.794	
401	4.165	3.680	7.794	
Buick V8 Engine				
350	3.800	3.850	9.682	
400	4.000	3.850	9.378	
455	4.313	3.900	9.378	
Chevrolet V8 Engine				
265	3.750	3.000	7.794	
267	3.500	3.484	7.794	
283	3.875	3.000	7.794	
302	4.000	3.000	7.794	
305	3.736	3.480	7.794	
307	3.875	3.250	7,794	
327	4.000	3.250	7.794	
350	4.000	3.480	7.794	
396	4.094	3.760	8.280/9.252	
400	4.125		7.794	
		3.750		
402	4.125	3.760	8.280/9.252	
427	4.250	3.760	8.280/9.252	
454	4.250	4.000	8.280/9.252	
Chrysler V8 Engine				
273	3.630	3.310	7.500	
318	3.910	3.310	7.500	
340	4.040	3.310	7.500	
360	4.000	3.580	7.500	
383	4.250	3.380	8.575	
400	4.340	3.380	8.575	
413	4.180	3.750	9.315	
426H	4.250	3.750	10.82/11.74	
426VV	4.250	3.750	9.375	
440	4.320	3.750	9.315	
440			7.313	
Ford V8 Engine 289 4.000 2.870 6.876				
302	4.000	3.000	6.876	
302 BOSS	4.000	3.000	6.876	
351W	4.000	3.500	8.144	
351C	4.000	3.500	8.408	
351M	4.000	3.500	9.500	
390	4.050	3.871	9.620	
400M	4.000	4.000	9.500	
406	4.130	3.780	9.620	
427	4.230	3.780	9.620	
428	4.130	3.984	9.620	
429	4.360	3.590	8.550	
460	4.360	3.850	8.550	
Pontiac V8 Engine				
301 4.000 3.000 8.120				
326	3.781	3.750	8.693	
350	3.875	3.750	9.130	
389	4.063	3.750	9.130	
400	4.120	3.750	9.130	
421	4.094	4.000	9.130	
			9.130	
428	4.120	4.000		
455	4.150	4.210	9.130	
Oldsmobile V8 Engine				
260	3.550	3.385	8.234	
307	3.800	3.385	8.234	
330	3.939	3.385	8.234	
350	4.057	3.385	8.234	
394	4.125	3.688	8.234	
400 (65-67)	4.000	3.975	9.750	
400 (68 & 69)	3.870	4.250	9.750	
403	4.351	3.385	8.234	
425	4.125	3.975	9.750	
455	4.125	4.250	9.750	

'06 Z06

Bore 4.125

Stroke 4.00

Chart Copyright Powerhouse Products

Oil Control

- Only fair on a stock LT5. 600 to 1200 miles per quart when run at high power output.
- Dependent on piston ring sealing and piston ring design.
- The 368 and 385 use a wide oil control ring. A standard tension oil control ring is available.
- The 415 uses a narrow oil control ring. Only a low tension oil control ring is available.
- The wide oil control ring is 3/16" or 4.75 mm. The narrow ring is 3 mm.

415 Oil Control Ring Land

The piston pin location is as high as possible. The oil control ring has been reduced in size to make room for the pin. The width has been reduced from a normal 4.75mm to 3 mm.

Pistons

- We and most others use JE Pistons
- Excellent quality. Easy to customize specifications.
- We use 4032 high silicon (12%) alloy for engines that will be touring. This alloy allows tighter piston to cylinder fitment.
- Softer 2618 alloy can be used for serious racing. Piston slap is greater with 2618.

Tuning

- Need to prevent excess detonation
 - Correct fueling
 - Correct ignition spark advance. Test the knock control system.
 - Runaway detonation will often lead to failure of a head gasket.

Power to Weight Ratio

- The Bottom Line
 - '06 Z06 weight 3130. Power 500.

Source, Corvette Museum www site.

Power to weight ratio, 3130/500 = 6.26

'93 385 ZR-1 weight, 3483. Power 565.

Source, '93 owners video. John Heinricy.

Power to weight ratio, 3483/565 = 6.16

Haibeck Automotive Technology

The Only ZR-1 Specialist

630-458-8427 Addison, Illinois

www.zr1specialist.com